
ROC Curve

(Replace T4 example)

Example 9.12 ROC for duration of rupture of membrane for Cesarean delivery

Many full term births in a hospital require induction of labor. Induction succeeds in most cases but fails in a few. In case the induction fails, a Cesarean is done for delivery. This involves pain, time and money but also requires mental preparedness.

It would be nice for both the woman and family and the attending obstetrician to anticipate a Cesarean delivery on the basis of patient characteristics. The traditional method is to compute Bishop Score based on dilatation, effacement, consistency and position. Other parameters that influence the success of induction of labor are maternal age, parity, BMI and amniotic fluid index.  A study was carried out in n =166 cases with prelabor rupture of membrane to find if the duration since rupture can help in predicting the Cesarean delivery. Although the study was prospective but sensitivity and specificity were calculated for different durations of rupture. The data obtained are shown in Table 1.

Table 1: Sensitivity and (1 – specificity) for Cesarean delivery at different duration of rupture of membrane

	Duration (hr) greater

 than or equal to
	Sensitivity
	1 - specificity

	.00
	1.000
	1.000

	.63
	1.000
	.976

	.88
	1.000
	.969

	1.25
	1.000
	.890

	1.75
	1.000
	.866

	2.13
	1.000
	.819

	2.38
	1.000
	.811

	2.75
	1.000
	.780

	3.25
	1.000
	.717

	3,75
	1.000
	.709

	4.50
	1.000
	.646

	5.13
	.971
	.583

	5.38
	.971
	.575

	5.75
	.971
	.551

	6.25
	.914
	.378

	6.75
	.914
	.346

	7.13
	.857
	.291

	7.38
	.857
	.283

	7.75
	.857
	.276

	8.25
	.800
	.189

	8.75
	.800
	.181

	9.25
	.743
	.110

	9.75
	.743
	.102

	10.25
	.543
	.039

	10.75
	.543
	.031

	11.50
	.457
	.024

	12.50
	.400
	.008

	13.50
	.343
	.000

	14.50
	.286
	.000

	15.50
	.257
	.000

	16.50
	.200
	.000

	17.50
	.171
	.000

	18.50
	.143
	.000

	19.50
	.114
	.000

	20.25
	.057
	.000

	21.50
	.000
	.000


The ROC curve obtained by plot at different cut-offs is shown in Figure 9.8.  A statistical software found that the area under the curve (AUC) is c = 0.898 with SE = 0.029 and 95% CI from 0.841 to 0.956. AUC is explained later in this section.
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FIGURE 9.8: ROC Curve of duration since rupture membrane for Cesarean delivery

With c = 0.898, it seems from this ROC that duration since rupture of membrane itself is a good indicator to anticipate Cesarean delivery. The best cut-off that maximizes (sensitivity + specificity) is 8.25 hours.  At this duration, the sensitivity is 0.80 and specificity is 0.81 (1 –  specificity = 0.19).

Although not shown above, the Bishop score was not found to be as good an indicator of impending Cesarean as was duration since rupture in this example.  Otherwise also, Bishop’s score is subjective and nonreproducible because of higher inter- and intra-observer variability.

Example 9.12 illustrates how ROC can be effectively used for medical decisions.  The example is illustrative only and should not be construed to mean that duration since rupture can be solely used to anticipate Cesarean.  For this, studies in different locales are needed. 

ROC curve is useful in (i) finding optimal cut-off point to least misclassify diseased and non-diseased subjects; (ii) evaluating the discriminatory ability of a test to correctly pick up diseased and non-diseased subjects; (iii) comparing efficacy of two or more medical tests for assessing the same disease; and (iv) comparing two or more observers measuring the same test (inter-observer variability). The details are as follows.

Methods to find the ‘optimal’ threshold point 

ROC curve can help to identify a threshold that gives the highest sum of sensitivity and specificity in situations where sensitivity and specificity are available for a large number of values. In Example 9.12, the values are on continuous scale but they can be in equally spaced categories. The number of such categories must be at least five for ROC curve to be adequate.

Three criteria are used to find optimal threshold point from ROC curve. First two methods give equal weight to sensitivity and specificity and impose no ethical, cost, and no prevalence constraints. The third criterion considers cost which mainly includes financial cost for correct and false diagnosis, cost of discomfort to person caused by treatment, and cost of further investigation when needed.  This method is rarely used in medical literature because it is difficult to estimate the respective costs and prevalence is often difficult to assess. These three criteria are known as points on curve closest to the (0, 1), Youden index, and minimize cost criterion, respectively. 
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FIGURE 9.9: Finding best cut-off from the ROC curve

If sn and sp denote sensitivity and specificity, respectively, the Euclidean distance between the point (0, 1) and any point on the ROC curve is d = √[(1 – sn)2 + (1 – sp)2]. To obtain the optimal cut-off point to discriminate the disease with nondisease subject, calculate this distance for each observed cut-off point, and locate the point where the distance is minimum. Most of the ROC analysis softwares calculate the sensitivity and specificity at all the observed cut-off points allowing you to do this exercise.  

The second is Youden index that maximizes the vertical distance from line of equality to the point [x, y] as shown in Figure 9.9. The x represents (1- specificity) and y represents sensitivity. In other words, the Youden index J is the point on the ROC curve which is farthest from line of equality (diagonal line). The main aim of Youden index is to maximize the difference between true positive rate (sn) and false positive rate (1 – sp) and little algebra yields J = max[sn+sp]. The value of J can be located by doing a search of plausible values where sum of sensitivity and specificity can be maximum. Youden index is more commonly used criterion because this index reflects the intension to maximize the correct classification rate and is easy to calculate. Many authors advocate this criterion. In Example 9.12, such a threshold is 8.25 hours corresponding to sensitivity = 0.80 and specificity = 0.81.


These procedures for finding the optimal threshold are applicable when both sensitivity and specificity are equally important. If they are not, expert judgemet may be required to find an appropriate cutoff. A guideline is as follows. Use it with discretion.

For a rare disease, false positive test would be a terrible thing to occur. You must minimize false positives even at the cost of missing true positives. Thus the test should have high specificity. The threshold would be towards lower part of the ROC curve.

For a common disease, missing true positives would be bad. Thus the test should have high sensitivity. The threshold would move towards right on the ROC curve where sensitivity is high and specificity low (1 – specificity) high.

Area under the ROC curve

Primary utility of ROC curve lies in the area under the curve (AUC). In addition to the inherent validity mentioned earlier, total area under ROC curve is a single index for measuring the performance a test. This is denoted by statistic c. The larger the AUC, the better is overall performance of the medical test to correctly identify diseased and nondiseased subjects. The closer the ROC curve to the left and top border (see Figure 9.8), the larger is the AUC and more valid is the test in terms of sensitivity and specificity. If the test is lousy, for every true positive, as the level (e.g., of duration since rupture) increase, you are likely to encounter a false positive. The ROC curve tends to flatten in this case and you get nearly a diagonal line. If the test is good, you are initially most likely to encounter true positives for increasing level. Later, as you start to encounter fewer true positives and more false positives, the curve tends to become horizontal (Check).

The maximum AUC is 1.0 and the actual area measures the test validity in the sense of its ability to correctly classify those known with and without the disease. Because of inherent variations and uncertainties in all biological phenomena, no test can be perfect. It is considered excellent if AUC is 0.90 or more, and good if AUC is between 0.80 and 0.89. An area of 0.50 corresponds to the diagonal and indicates that the test is absolutely not helpful. In a rare case, if this area is less than 0.50, conclude that the test is misleading. In this case, reverse the definition of positive and negative, i.e., in place of higher values signifying the presence of disease, lower values will correctly pick up the disease.
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FIGURE 9.10: Three ROC curves with different areas under the curve

Figure 9.10 depicts three different ROC curves. Considering the area under the curve, test A is better than both B and C, and the curve A is closer to the perfect discrimination. Test B has good validity and test C has moderate.

As mentioned for sensitivity and specificity, validity of ROC and AUC depends on the ‘gold’ really being so. If the gold is suspect, a high AUC does not necessarily mean a good test. Also, for ROC to be valid, the test must not be affected by what gold is. All other constraints mentioned for sensitivity–specificity also apply.

Since decision regarding which test is better depends on AUC, this should be obtained by using an appropriate method. Statistical softwares provide nonparametric and parametric methods for obtaining the area under ROC curve. The user has to make a choice. The following details may help. 

Nonparametric methods are distribution-free and the resulting area under the ROC curve is called empirical. First such method uses trapezoidal rule. If sensitivity and specificity are denoted by sn and sp, respectively, the trapezoidal rule calculates the area by joining the points (sn, 1 – sp) at each interval value of the continuous test and draws a straight line joining the x-axis. This forms several trapezoids and their area can be easily calculated and summed. Another non-parametric method uses Mann-Whitney statistics, also known as Wilcoxon rank-sum statistic and the c-index for calculating area.  Both these non-parametric methods of estimating AUC estimate have been found equivalent (1). Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29-36.  

Parametric methods are used when the statistical distribution of test values in diseased and non-diseased is known.  Binormal distribution is commonly used for this purpose. This is applicable when both diseased and non-diseased test values follow normal distribution. If data are actually binormal or a transformation such as log and square makes the data binormal then the relevant parameters can be easily estimated by the means and variances of test values in diseased and non-diseased subjects.  For details, see (2). Zhou Xh, Obuchowski NA, McClish DK. Statistical Methods in Diagnostic Medicine. New York: John Wiley and Sons, Inc, 2002.

The choice of method to calculate AUC essentially depends upon availability of statistical software. Binormal method produces the smooth ROC curve, further statistics can be easily calculated but gives biased results when data are degenerate and distribution is bimodal. When software for both parametric and non-parametric methods is available, conclusion should be based on the method that yields greater precision of estimate of AUC.

Equal AUCs of two tests represents similar overall performance of tests but this does not necessarily mean that both the curves are identical. They may cross each other. Figure 9.11(a) has hypothetical ROC curves of two medical tests A and B applied on the same subjects to assess the same disease. Test A and B have nearly equal area but cross each other. Test A performs better than test B where high sensitivity is required, and test B performed better than A when high specificity is needed.  

                               (a)                                                                    

  (b)
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FIGURE 9.11: (a) Two ROC curves crossing each other but with nearly same area


     (b)  Illustration of partial area under the ROC curve

In such cases and in some other situations, the interest may be restricted to specific values of sensitivity or specificity. You may be interested in a test with high specificity as for a disease with grave prognosis (cancer). Then the interest will be in test B and that too for specificity ≥ 0.65 or (1 – specificity) < 0.35. In that case, the area of interest is 1+2 as shown in Figure 9.11(b). This is called partial area under the curve. Software such as STATA calculates this also and, if you want for easy interpretability, you can standardize it to 1 by considering total area = 1 of rectangle upto (1 – specificity) = 0.35.

Variance of AUC can be obtained by using parametric and non-parametric methods. The formula is complex. Software will give you this easily. This variance can be used to obtain the confidence interval as per the procedure given in a later chapter. 
Formulas of sample size for testing hypothesis on sensitivity-specificity or the AUC with a pre-specified value and for comparison on the same subjects or different subjects are complex.  Refer (2) for details. Zhou Xh, Obuchowski NA, McClish DK. Statistical Methods in Diagnostic Medicine. New York: John Wiley and Sons, Inc, 2002.

There are many more topics for interested reader to explore such as combining the multiple ROC curve for meta-analysis, ROC analysis to predict more than one alternative, ROC analysis in the clustered environment, and for tests repeated over time, etc. For these see (2,3). Zhou Xh, Obuchowski NA, McClish DK. Statistical Methods in Diagnostic Medicine. New York: John Wiley and Sons, Inc, 2002. Kester AD, Buntinx F. Meta analysis of curves. Med Decis Making 2000; 20:430-439.
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